Nearly Optimal Sparse Group Testing

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

(Nearly) Sample-Optimal Sparse Fourier Transform

We consider the problem of computing a k-sparse approximation to the discrete Fourier transform of an n-dimensional signal. Our main result is a randomized algorithm that computes such an approximation using O(k log n(log log n)) signal samples in time O(k log n(log log n)), assuming that the entries of the signal are polynomially bounded. The sampling complexity improves over the recent bound ...

متن کامل

Nearly Optimal Minimax Estimator for High Dimensional Sparse Linear Regression

We present estimators for a well studied statistical estimation problem: the estimation for the linear regression model with soft sparsity constraints (`q constraint with 0 < q ≤ 1) in the high-dimensional setting. We first present a family of estimators, called the projected nearest neighbor estimator and show, by using results from Convex Geometry, that such estimator is within a logarithmic ...

متن کامل

Nearly Sparse Linear Algebra

In this article, we propose a method to perform linear algebra on a matrix with nearly sparse properties. More precisely, although we require the main part of the matrix to be sparse, we allow some dense columns with possibly large coefficients. We modify Block Wiedemann algorithm and show that the contribution of these heavy columns can be made negligible compared to the one of the sparse part...

متن کامل

Multilevel Group Testing via Sparse-graph Codes

In this paper, we consider the problem of multilevel group testing, where the goal is to recover a set of K defective items in a set of n items by pooling groups of items and observing the result of each test. The main difference of multilevel group testing with the classical non-adaptive group testing problem is that the result of each test is an integer in the set [L] = {0, 1, · · · , L}: if ...

متن کامل

Nearly Optimal Private LASSO

We present a nearly optimal differentially private version of the well known LASSO estimator. Our algorithm provides privacy protection with respect to each training example. The excess risk of our algorithm, compared to the non-private version, is Õ(1/n), assuming all the input data has bounded `∞ norm. This is the first differentially private algorithm that achieves such a bound without the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2019

ISSN: 0018-9448,1557-9654

DOI: 10.1109/tit.2019.2891651